The Belgian MYRRHA ADS Project: Recent Developments and Future Perspectives

Didier De Bruyn, Hamid Aït Abderrahim, Peter Baeten & Jarne Verpoorten
SCK•CEN, Mol, Belgium

Pitesti, May 24th, 2017
Myrrha: Context & History

- Myrrha: What is the Project?
- Myrrha: technical planning and funding
- Myrrha: Reasons to invest in the Project
Context – MYRRHA History prior to 2010

- **1995-1997: Start of the MYRRHA Project**:
 - MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multifunctional research facility for innovative applications.
 - MYRRHA will be the world’s first prototype of a subcritical lead-bismuth cooled reactor driven by a particle accelerator. In an **Accelerator Driven System (ADS)**, the particle accelerator is used to generate a primary neutron source in the center of a subcritical core to initiate the chain reaction.

- **2005: DG Research of EC selects MYRRHA as the reference project for EU ADS**
 - In 2005, the European Commission DG Research & Innovation (DG RTD) outlined a co-ordinated strategy for advanced reactors at EU level, making **MYRRHA** the **basis for ADS** (Accelerator Driven System) **in the EU**
 - The EU commitment is translated financially in a cornerstone EU funding in Framework Programme 6 EUROTRANS, the then largest-ever, supplemented with a series of other FP6, FP7 and H2020 projects

- **2009: International independent review conducted by OECD/NEA**
 - In 2009, **the Belgian government mandated** the OECD Nuclear Energy Agency (NEA) to organise an independent international evaluation of the MYRRHA project
 - The **MYRRHA Independent Review Team (MIRT)** comprised experts from FR, DE, JP, NL, CH, UK & US
Context – The financial commitment of Belgium to MYRRHA and the international dimension

- **March 5th 2010: Commitment Belgium to MYRRHA 2010-2014**
 - On March 5th 2010, based on a positive evaluation by the OECD/NEA MIRT in 2009, the Belgian government decided to grant a 60 M€\text{2010} dedicated budget to MYRRHA for the period 2010-2014. At the same time, the Belgian government committed to finance the implementation phase for 40% of the total investment of the full infrastructure.

- **2015: Renewal commitment Belgium to MYRRHA**
 - In 2015, the Belgian government renewed its financial commitment towards MYRRHA with a special endowment of EUR 40m €\text{2015} for 2015-2017.

- **End 2017: Expected decision Belgium regarding the construction of MYRRHA**

- **International dimension of MYRRHA:**
 - European Commission has been supporting MYRRHA since ’99 through scientific framework programs.
 - In 2010, the European Strategic Forum for Research Infrastructures (ESFRI) promoted MYRRHA to its high priority list of major research infrastructures for energy.
 - MYRRHA is embedded in a wide network of international nuclear organisations incl. Nuclear Government Agencies, Nuclear Industry, Research Institutes, and Universities.
 - The MYRRHA Project Team currently pursues funding commitments from International Consortium Members and is in the process to obtain EIB funding.
Outline

• MYRRHA : Context & History

MYRRHA : What is the Project ?

• MYRRHA : technical planning and funding
• MYRRHA : Reasons to invest in the Project
Construction of an Accelerator-Driven System (ADS) consisting of

- A 600 MeV – 2.5 mA to 4.0 mA **proton linear accelerator**
- A **spallation target/source**
- A lead-Bismuth Eutectic (LBE) cooled **reactor** able to operate in subcritical & critical mode

Accelerator

<table>
<thead>
<tr>
<th>particles</th>
<th>protons</th>
</tr>
</thead>
<tbody>
<tr>
<td>beam energy</td>
<td>600 MeV</td>
</tr>
<tr>
<td>beam current</td>
<td>2.4 to 4 mA</td>
</tr>
</tbody>
</table>

Target

<table>
<thead>
<tr>
<th>main reaction</th>
<th>spallation</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>2×10^{17} n/s</td>
</tr>
<tr>
<td>material</td>
<td>LBE (coolant)</td>
</tr>
</tbody>
</table>

Reactor

<table>
<thead>
<tr>
<th>power</th>
<th>65 to 100 MW$_{th}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{eff}</td>
<td>0.95</td>
</tr>
<tr>
<td>spectrum</td>
<td>fast</td>
</tr>
<tr>
<td>coolant</td>
<td>LBE</td>
</tr>
</tbody>
</table>

Source: SCK•CEN MYRRHA Project Team
What is an ADS?

An **Accelerator-Driven-System** is:

- a subcritical neutron multiplication assembly (nuclear reactor, $k_{\text{eff}} < 1$),
- driven by an external neutron source,
- obtained through the spallation mechanism with high energy (~1GeV) protons,
- impinging on massive (high Z) target nuclei (Pb, Pb-Bi, W, Ta, U).
MYRRHA is a multipurpose research facility, addressing end-markets with both significant societal and economic impact.
Fission generates High-Level Nuclear Waste

Minor Actinides

- High radiotoxicity
- Long lived (>1,000 years)
- Highly radiotoxic
- Heat emitting

Source: SCK•CEN MYRRHA Project Team
Transmutation is the better solution for Spent Nuclear Fuel

*SNF = Spent Nuclear Fuel

Source: European Commission Strategy Paper on Partitioning & Transmutation (2005), SCK•CEN MYRRHA Project Team
EU P&T Strategy 2005: “The implementation of P&T of a large part of the high-level nuclear wastes in Europe needs the demonstration of its feasibility at an “engineering” level. The respective R&D activities could be arranged in four “building blocks”:

<table>
<thead>
<tr>
<th>P&T building blocks</th>
<th>Description</th>
<th>Name & Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Partitioning</td>
<td>Demonstrate capability to process a sizable amount of spent fuel from commercial Light Water Reactors to separate plutonium, uranium and minor actinides</td>
<td>Atalante (FR)</td>
</tr>
<tr>
<td>2 Fuel production</td>
<td>Demonstrate the capability to fabricate at a semi-industrial level the dedicated fuel needed to load in a dedicated transmuter</td>
<td>JRC-ITU (EU)</td>
</tr>
<tr>
<td>3 Transmutation</td>
<td>Design and construct one or more dedicated transmuters</td>
<td>MYRRHA (BE)</td>
</tr>
<tr>
<td>4 Fuel unloading</td>
<td>Specific installation to process fuel unloaded from transmuter</td>
<td></td>
</tr>
</tbody>
</table>

The European Commission contributes to the 4 building blocks and fosters the national programmes towards this strategy for demonstration at engineering level.
Outline

- MYRRHA: Context & History
- MYRRHA: What is the Project?
- MYRRHA: technical planning and funding
- MYRRHA: Reasons to invest in the Project
MYRRHA’s phased implementation strategy

Benefits of phased approach:
- Reducing technical risk
- Spreading investment cost
- First R&D facility available in Mol end of 2024
High power proton beam (up to 2.4 MW)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton energy</td>
<td>600 MeV</td>
</tr>
<tr>
<td>Beam current</td>
<td>0.1 to 4.0 mA</td>
</tr>
<tr>
<td>Repetition rate</td>
<td>CW, 250 Hz</td>
</tr>
<tr>
<td>Beam duty cycle</td>
<td>10⁻⁴ to 1</td>
</tr>
<tr>
<td>Beam power stability</td>
<td>< ± 2% on a time scale of 100ms</td>
</tr>
<tr>
<td>Beam footprint on reactor window</td>
<td>Circular Ø85mm</td>
</tr>
<tr>
<td>Beam footprint stability</td>
<td>< ± 10% on a time scale of 1s</td>
</tr>
<tr>
<td># of allowed beam trips on reactor longer than</td>
<td>10 maximum per 3-month operation</td>
</tr>
<tr>
<td>3 sec</td>
<td>period</td>
</tr>
<tr>
<td># of allowed beam trips on reactor longer than</td>
<td>100 maximum per day</td>
</tr>
<tr>
<td>0.1 sec</td>
<td></td>
</tr>
<tr>
<td># of allowed beam trips on reactor shorter than</td>
<td>unlimited</td>
</tr>
<tr>
<td>0.1 sec</td>
<td></td>
</tr>
</tbody>
</table>

Extreme reliability level: MTBF > 250 hrs
Reactor – Current Primary System design (v1.6)

- Reactor layout
 - Vessel
 - Cover
 - Core barrel and Multi-functional plugs
 - Above Core Structure
 - Cradle, Core Restraint System, beam line and window target
 - Si-doping units, Mo-irradiation units, control rods and safety rods
 - Primary Heat Exchangers
 - Primary Pumps
 - In-Vessel Fuel Handling Machines, Fuel Transfer Devices, Failed Fuel Detection Devices, Extraction Pumps
 - Diaphragm and support structure
 - Reactor pit, Reactor Vessel
 - Auxiliary Cooling System

Source: SCK•CEN MYRRHA Project Team
Phased implementation plan MYRRHA Project (2016-2030)

Phase 1: ‘16-'24
- 1st Facility at Mol in 2024

Phase 2&3: ‘25-'30
- Tendering and Construction Reactor
- 600MeV Accelerator Prototyping & Construction
- 600MeV Accelerator Building Start construction
- 600MeV Pilot Beam & Commissioning
- 100 MeV Accelerator Prototyping & Construction
- 100 MeV Accelerator Building Start construction
- 100 MeV Accelerator reliability tests
- Pre-Construction Engineering and Design (including R&D Programmes)

Source: SCK•CEN MYRRHA Project Team
P&T & MYRRHA inspired many Euratom FP projects

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>FP5</th>
<th>FP6</th>
<th>FP7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupling</td>
<td>MUSE, FUTURE, MEGAPIE</td>
<td>DM2 ECATS, DM3 AFTRA</td>
<td>FREYA, FAIRFUELS</td>
</tr>
<tr>
<td>Fuels</td>
<td>SPIRE, TECLA, PDS-XADS</td>
<td>DM4 DEMETRA</td>
<td>MATTER, GETMAT</td>
</tr>
<tr>
<td>Materials</td>
<td>ADOPT</td>
<td>DM1 DESIGN</td>
<td>CDT, MAX, SILER</td>
</tr>
<tr>
<td>Design</td>
<td>ASCHLIM</td>
<td>EUROTRANS</td>
<td>THINS</td>
</tr>
<tr>
<td>Thermal-Hydraulics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LFR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrastructures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scenario Studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 28 M€
- 31 M€
- 31 M€
MYRRHA continuous getting support in H2020

- **H2020-NFRP-2014-2015**

- **H2020-NFRP-2016-2017**
 - IL TROVATORE: Innovative cladding materials for advanced accident-tolerant energy systems, 31 partners, total budget: 5 M€ – granted budget EC 100%, start: 1/10/2017, duration: 54 months, coordinator: SCK•CEN
MYRRHA is embedded in an international R&D network
Outline

- MYRRHA: Context & History
- MYRRHA: What is the Project?
- MYRRHA: technical planning and funding

MYRRHA: Reasons to invest in the Project
Reasons to invest in Project MYRRHA

1. **Solution for nuclear legacy**: MYRRHA closes the nuclear fuel cycle with a sustainable and economic solution for spent nuclear fuel legacy (over 180,000 tons* globally)

2. **Crucial medical radio-isotopes**: MYRRHA saves lives in the form of medical radio-isotopes which are crucial for radio-diagnostics and radio-therapy

3. **Direct financial return**: investment re-paid over lifetime, pay-back time of 24 years

4. **Indirect financial return**: MYRRHA creates over 2,500 full-time jobs

5. **Economics from Intellectual Property**: Valorisation and commercialisation of components of MYRRHA, e.g. radio-isotopes, SMR, Oxygen sensor and control,…

6. **Contributes to strategic EU objectives**: MYRRHA recognized by EU to support objectives of a knowledge-based economy (on ESFRI Roadmap, MYRRHA is 1 out of only 4 EU Research Infrastructures in category “Energy”) and Energy Union (SET Plan)

7. **Large R&D network**: MYRRHA is embedded in a worldwide R&D network from academia, research organisations and industries

Source: “The MYRRHA ESFRI Project” report by EC Commissioner G. Oettinger and Secretary of State M. Watelet, May 2013; SCX-CEN MYRRHA Project Team, MYRRHA Business Plan

Note: *Excluding weapon-grade material
Conclusion

- Advanced nuclear fuel cycles are required to meet now the objective of making nuclear fission sustainable.
- The objectives of sustainability: waste minimisation, better use of the natural resources and reduced proliferation risks can be met with both fast reactors and dedicated burners (ADS).
- Design studies have been performed within and outside Europe; prototypes should be planned and realized, to go from paper work to real work.
- Through the new MYRRHA research infrastructure, Belgium is contributing to this international endeavour.
Copyright © 2017 - SCK•CEN

PLEASE NOTE!
This presentation contains data, information and formats for dedicated use ONLY and may not be copied, distributed or cited without the explicit permission of the SCK•CEN. If this has been obtained, please reference it as a “personal communication. By courtesy of SCK•CEN”.

SCK•CEN
Studiecentrum voor Kernenergie
Centre d’Etude de l’Energie Nucléaire
Belgian Nuclear Research Centre

Stichting van Openbaar Nut
Fondation d’Utilité Publique
Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSELS
Operational Office: Boeretang 200 – BE-2400 MOL